If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+27x-176=0
a = 1; b = 27; c = -176;
Δ = b2-4ac
Δ = 272-4·1·(-176)
Δ = 1433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{1433}}{2*1}=\frac{-27-\sqrt{1433}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{1433}}{2*1}=\frac{-27+\sqrt{1433}}{2} $
| k^2+8k+40=0 | | n^2-n-1326=0 | | f-5/25=0 | | 9y+5=4(y-2)8 | | x+2x+3x=7x | | 9^(x)+3^(2x)-1=53 | | 02x=0.9-0.1 | | 5x-6(x-5)=2(x+5)+(x-4)= | | 15=8x/4 | | 8x=0.5x+1 | | 2x^2-32x+480=0 | | 8d-9=32 | | 2.5j+52=0 | | 2.5-i=55 | | 4/v+5=24 | | x2/4=16 | | 64x+x=614 | | (x+4)(x-6)(x-8)(x+6)=0 | | 11z+5-10z=-1 | | 5^2x=32 | | 16x=-328 | | -2y^2+7y+3=3 | | X=14/13=12/13x | | 2x-6/4=17 | | 12x4=4x-10 | | 11x=5x+26 | | -5(-3x+1)=- | | 3.4x=10.88 | | 0.24x=3 | | 35x=1575 | | 26.4=1.2x | | 156=52x |